Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 938
Filtrar
1.
Chemosphere ; 356: 141940, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38588894

RESUMO

Dissolved black carbon (DBC) is the ubiquitous component of dissolved organic matter pools with the high reactivity for disinfection byproducts formation. However, it is unknown that the influence of molecular weight (MW) of natural organic matter (NOM) on the DBC removal from potable water sources. Therefore, it was studied that the DBC removal by coagulation in the presence of the NOM with various molecular weights. The DBC removal was promoted due to the presence of NOM and the promotion degree decreased with decreasing MW of NOM. Furthermore, the removal ratio of humic-like component increased as the MW of NOM decreased, suggesting that the competition between DBC and NOM increased with decreasing MW. The functional groups after coagulation were the same with that before coagulation as the MW of NOM varied, suggesting that the molecular structure was not the key factor of influencing the DBC removal. This study will give the deep insight into the prediction of the DBC removal ratio by coagulation based on the MW of NOM in water sources.

2.
Nanomaterials (Basel) ; 14(7)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38607123

RESUMO

Methodologies across the dispersion preparation, characterization, and cellular dosimetry of hydrophilic nanoparticles (NPs) have been developed and used extensively in the field of nanotoxicology. However, hydrophobic NPs pose a challenge for dispersion in aqueous culture media using conventional methods that include sonication followed by mixing in the culture medium of interest and cellular dosimetry. In this study, a robust methodology for the preparation of stable dispersions of hydrophobic NPs for cellular studies is developed by introducing continuous energy over time via stirring in the culture medium followed by dispersion characterization and cellular dosimetry. The stirring energy and the presence of proteins in the culture medium result in the formation of a protein corona around the NPs, stabilizing their dispersion, which can be used for in vitro cellular studies. The identification of the optimal stirring time is crucial for achieving dispersion and stability. This is assessed through a comprehensive stability testing protocol employing dynamic light scattering to evaluate the particle size distribution stability and polydispersity. Additionally, the effective density of the NPs is obtained for the stable NP dispersions using the volumetric centrifugation method, while cellular dosimetry calculations are done using available cellular computational modeling, mirroring approaches used for hydrophilic NPs. The robustness of the proposed dispersion approach is showcased using a highly hydrophobic NP model (black carbon NPs) and two culture media, RPMI medium and SABM, that are widely used in cellular studies. The proposed approach for the dispersion of hydrophobic NPs results in stable dispersions in both culture media used here. The NP effective density of 1.03-1.07 g/cm3 measured here for black carbon NPs is close to the culture media density, resulting in slow deposition on the cells over time. So, the present methodology for dispersion and dosimetry of hydrophobic NPs is essential for the design of dose-response studies and overcoming the challenges imposed by slow particle deposition.

3.
Sci Total Environ ; 927: 172262, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38583605

RESUMO

South and Southeast Asia (SSA) emitted black carbon (BC) exerts potential effects on glacier and snow melting and regional climate change in the Tibetan Plateau. In this study, online BC measurements were conducted for 1 year at a remote village located at the terminus of the Mingyong Glacier below the Meili Snow Mountains. The Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) was used to investigate the contribution and potential effect of SSA-emitted BC. In addition, variations in the light absorption characteristics of BC and brown carbon (BrC) were examined. The results indicated that the annual mean concentration of BC was 415 ± 372 ngm-3, with the highest concentration observed in April (monthly mean: 930 ± 484 ngm-3). BC exhibited a similar diurnal variation throughout the year, with two peaks observed in the morning (from 8:00 to 9:00 AM) and in the afternoon (from 4:00 to 5:00 PM), with even lower values at nighttime. At a short wavelength of 370 nm, the absorption coefficient (babs) reached its maximum value, and the majority of babs values were < 20 Mm-1, indicating that the atmosphere was not overloaded with BC. At the same wavelength, BrC substantially contributed to babs, with an annual mean of 25.2 % ± 12.8 %. SSA was the largest contributor of BC (annual mean: 51.1 %) in the study area, particularly in spring (65.6 %). However, its contributions reached 20.2 % in summer, indicating non-negligible emissions from activities in other regions. In the atmosphere, the SSA BC-induced radiative forcing (RF) over the study region was positive. While at the near surface, the RF exhibited a significant seasonal variation, with the larger RF values occurring in winter and spring. Overall, our findings highlight the importance of controlling BC emissions from SSA to protect the Tibetan Plateau against pollution-related glacier and snow cover melting.

4.
Environ Sci Technol ; 58(16): 7165-7175, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38597176

RESUMO

Increasing wildfire frequency, a consequence of global climate change, releases incomplete combustion byproducts such as aquatic pyrogenic dissolved organic matter (DOM) and black carbon (DBC) into waters, posing a threat to water security. In August 2022, a series of severe wildfires occurred in Chongqing, China. Samples from seven locations along the Yangtze and Jialing Rivers revealed DBC, quantified by the benzene poly(carboxylic acid) (BPCA) method, comprising 9.5-19.2% of dissolved organic carbon (DOC). High concentrations of BPCA-DBC with significant polycondensation were detected near wildfire areas, likely due to atmospheric deposition driven by wind. Furthermore, Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) revealed that wildfires were associated with an increase in condensed aromatics, proteins, and unsaturated hydrocarbons, along with a decrease in lignins. The condensed aromatics primarily consisted of dissolved black nitrogen (DBN), contributing to abundant high-nitrogen-containing compounds in locations highly affected by wildfires. Meanwhile, wildfires potentially induced the input of recalcitrant sulfur-containing protein-like compounds, characterized by high oxidation, aliphatic nature, saturation, and low aromaticity. Overall, this study revealed the appearance of recalcitrant DBC and dissolved organic sulfur in river waters following wildfire events, offering novel insights into the potential impacts of wildfires on water quality and environmental biogeochemistry.

5.
J Environ Sci (China) ; 142: 69-82, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38527897

RESUMO

A comprehensive health risk assessment of PM2.5 is meaningful to understand the current status and directions regarding further improving air quality from the perspective of human health. In this study, we evaluated the health risks of PM2.5 as well as highly toxic inorganic components, including heavy metals (HMs) and black carbon (BC) based on long-term observations in Beijing from 2019 to 2021. Our results showed that the relative risks of chronic obstructive pulmonary disease, lung cancer, acute lower respiratory tract infection, ischemic heart disease, and stroke decreased by 4.07%-9.30% in 2020 and 2.12%-6.70% in 2021 compared with 2019. However, they were still at high levels ranging from 1.26 to 1.77, in particular, stroke showed the highest value in 2021. Mn had the highest hazard quotient (HQ, from 2.18 to 2.56) for adults from 2019 to 2021, while Ni, Cr, Pb, As, and BC showed high carcinogenic risks (CR > 1.0×10-6) for adults. The HQ values of Mn and As and the CR values of Pb and As showed constant or slight upwards trends during our observations, which is in contrast to the downward trends of other HMs and PM2.5. Mn, Cr, and BC are crucial toxicants in PM2.5. A significant shrink of southern region sourcesof HMs and BCshrank suggests the increased importance of local sources. Industry, dust, and biomass burning are the major contributors to the non-carcinogenic risks, while traffic emissions and industry are the dominant contributors to the carcinogenic risks in Beijing.


Assuntos
Poluentes Atmosféricos , Metais Pesados , Acidente Vascular Cerebral , Oligoelementos , Adulto , Humanos , Pequim , Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Chumbo , Poeira/análise , Metais Pesados/análise , Medição de Risco , Carbono , Material Particulado/análise
6.
Toxics ; 12(3)2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38535935

RESUMO

Black carbon (BC) aerosols are important for absorbing aerosols, affecting global climate change and regional air quality, and potentially harming human health. From March to May 2023, we investigated black carbon aerosol levels and air pollution in Beijing. Employing methods such as linear regression, Potential Source Contribution Function (PSCF) and Concentration-Weighted Trajectory (CWT), we analyzed the characteristics and sources of black carbon aerosols in the region. Results indicate that the light absorption coefficients of BC and BrC decrease with increasing wavelength, with BrC accounting for less than 40% at 370 nm. Daily variations in BC and PM2.5 concentrations exhibit similar trends, peaking in March, and BC displays a distinct bimodal hourly concentration structure during this period. Aethalometer model results suggest that liquid fuel combustion contributes significantly to black carbon (1.08 ± 0.71 µg·m-3), surpassing the contribution from solid fuel combustion (0.31 ± 0.2 µg·m-3). Furthermore, the significant positive correlation between BC and CO suggests that BC emissions in Beijing predominantly result from liquid fuel combustion. Potential source area analysis indicates that air masses of spring in Beijing mainly originate from the northwest (40.93%), while potential source areas for BC are predominantly distributed in the Beijing-Tianjin-Hebei region, as well as parts of the Shandong, Shanxi and Henan provinces. Moreover, this study reveals that dust processes during spring in Beijing have a limited impact on black carbon concentrations. This study's findings support controlling pollution in Beijing and improving regional air quality.

7.
Sci Total Environ ; 924: 171539, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38462012

RESUMO

Black carbon (BC) is a distinct type of carbonaceous aerosol that has a significant impact on the environment, human health, and climate. A non-BC material coating on BC can alter the mixing state of the BC particles, which considerably enhances the mass absorption efficiency of BC by directing more energy toward the BC cores (lensing effect). A lot of methods have been reported for quantifying the enhancement factor (Eabs), with diverse results. However, to the best of our knowledge, a comprehensive review specific to the quantification methods for Eabs has not been systematically performed, which is unfavorable for the evaluation of obtained results and subsequent radiative forcing. In this review, quantification methods are divided into two broad categories, direct and indirect, depending on whether experimental removal of the coating layer from an aged carbonaceous particle is required. The direct methods described include thermal peeling, solvent dissolution, and optical virtual exfoliation, while the indirect methods include intercept-linear regression fitting, minimum R squared, numerical simulation, and empirical value. We summarized the principles, procedures, virtues, and limitations of the major Eabs quantification methods and analyzed the current problems in the determination of Eabs. We pointed out what breakthroughs are needed to improve or innovate Eabs quantification methods, particularly regarding the need to avoid the influence of brown carbon, develop a broadband Eabs quantification scheme, quantify the Eabs values for the emissions of low-efficiency combustions, measure the Eabs of particles in a high-humidity environment, design a real-time monitor of Eabs by a proper combination of mature techniques, and make more use of artificial intelligence for better Eabs quantification. This review deepens the understanding of Eabs quantification methods and benefits the estimation of the contribution of BC to radiative forcing using climate models.

8.
Proc Natl Acad Sci U S A ; 121(13): e2305030121, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38517975

RESUMO

During wildfires and fossil fuel combustion, biomass is converted to black carbon (BC) via incomplete combustion. BC enters the ocean by rivers and atmospheric deposition contributing to the marine dissolved organic carbon (DOC) pool. The fate of BC is considered to reside in the marine DOC pool, where the oldest BC 14C ages have been measured (>20,000 14C y), implying long-term storage. DOC is the largest exchangeable pool of organic carbon in the oceans, yet most DOC (>80%) remains molecularly uncharacterized. Here, we report 14C measurements on size-fractionated dissolved BC (DBC) obtained using benzene polycarboxylic acids as molecular tracers to constrain the sources and cycling of DBC and its contributions to refractory DOC (RDOC) in a site in the North Pacific Ocean. Our results reveal that the cycling of DBC is more dynamic and heterogeneous than previously believed though it does not comprise a single, uniformly "old" 14C age. Instead, both semilabile and refractory DBC components are distributed among size fractions of DOC. We report that DBC cycles within DOC as a component of RDOC, exhibiting turnover in the ocean on millennia timescales. DBC within the low-molecular-weight DOC pool is large, environmentally persistent and constitutes the size fraction that is responsible for long-term DBC storage. We speculate that sea surface processes, including bacterial remineralization (via the coupling of photooxidation of surface DBC and bacterial co-metabolism), sorption onto sinking particles and surface photochemical oxidation, modify DBC composition and turnover, ultimately controlling the fate of DBC and RDOC in the ocean.

9.
Sci Total Environ ; 926: 171721, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38494028

RESUMO

Black Carbon (BC), formed by incomplete combustion, absorbs solar radiation and heats the atmosphere. We investigated the enhancement in optical absorption of BC due to coatings of water-soluble (WS) species in the polluted South Asian atmosphere. The BC Mass Absorption Cross-section (MAC; 678 nm) was estimated before and after removal of the WS components. Wintertime samples were collected from three South Asian receptor observatories intercepting large-footprint outflow: Bangladesh Climate Observatory Bhola (BCOB; integrating outflow of the Indo-Gangetic Plain), Maldives Climate Observatories at Hanimaadhoo (MCOH) and at Gan (MCOG), both reflecting outflow from the South Asian region. The ambient MAC observed at BCOB, MCOH and MCOG were 4.2 ± 1.4, 7.9 ± 1.9 and 7.1 ± 1.5 m2 g-1, respectively. The average enhancement of the BC MAC due to WS coatings (i.e., ws-EMAC) was identical at all three sites (1.6 ± 0.5) indicating that the anthropogenic aerosols had already evolved to a fully coated morphology at BCOB and/or that subsequent aging involved two compensating evolution processes of the coating. Inspecting the key coating component sulfate; the sulfate-to-BC ratio increased threefold when transitioning from BCOB to MCOH and by about 1.5 times from BCOB to MCOG. Conversely, both WS organic carbon (WSOC)/BC and water-insoluble OC (WIOC)/BC ratios declined with distance: WSOC/BC diminished by 84 % from BCOB to MCOH and by 80 % from BCOB to MCOG, while WIOC/BC dropped by about 63 % and 59 %, respectively. Such declines in WSOC and WIOC reflect a combination of photochemical oxidation and more efficient washout of OC compared to BC. The observed changes in the SO42-/BC and WSOC/BC ratios across South Asia highlight the significant impact of aerosol composition on the optical properties of Black Carbon (BC). These findings emphasize the need for detailed studies on aerosol composition to improve climate models and develop effective strategies for reducing the impact of anthropogenic aerosols on the climate.

10.
Sci Total Environ ; 923: 171353, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38432390

RESUMO

Black carbon (BC) exerts a profound and intricate impact on both air quality and climate due to its high light absorption. However, the uncertainty in representing the absorption enhancement of BC in climate models leads to an increased range in the modeled aerosol climate effects. Changes in BC optical properties could result either from atmospheric aging processes or from variations in its sources. In this study, a source-age model for identifying emission sources and aging states presented by University of California at Davis/California Institute of Technology (UCD/CIT) was used to simulate the atmospheric age distribution of BC from different sources and to quantify its impact on the optical properties of BC-containing particles. The results indicate that regions with greater aged BC concentrations do not correspond to regions with higher BC emissions due to atmospheric transport. High concentrations of aged BC are found in northern Yangtze River Delta (YRD) regions during summer. The chemical compositions of particles from different sources and with different atmospheric ages differ significantly. BC and primary organic aerosols (POA) are dominating in Traffic-dominated source while other components dominate in Industry-dominated source. As the atmospheric age increases, the mass fraction of secondary inorganic aerosols rises. Compared to the original model, the simulated mass absorption cross section of BC particles in the source-age model decreases while the single scattering albedo increases. This compensates for ~11 % of the overestimation of the simulated BC direct radiative forcing. Our study highlights that incorporating atmospheric age and source information into models can greatly improve the estimation of optical properties of BC-containing particles and deepen our understanding of their climate effects.

11.
Sci Total Environ ; 927: 171897, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38522542

RESUMO

BACKGROUND: Systemic inflammation contributes to cardiovascular risk and chronic obstructive pulmonary disease (COPD) pathophysiology. Associations between systemic inflammation and exposure to ambient fine particulate matter (PM ≤ 2.5 µm diameter; PM2.5), and black carbon (BC), a PM2.5 component attributable to traffic and other sources of combustion, infiltrating indoors are not well described. METHODS: Between 2012 and 2017, COPD patients completed in-home air sampling over one-week intervals, up to four times (seasonally), followed by measurement of plasma biomarkers of systemic inflammation, C-reactive protein (CRP) and interleukin-6 (IL-6), and endothelial activation, soluble vascular adhesion molecule-1 (sVCAM-1). Ambient PM2.5, BC and sulfur were measured at a central site. The ratio of indoor/ambient sulfur in PM2.5, a surrogate for fine particle infiltration, was used to estimate indoor BC and PM2.5 of ambient origin. Linear mixed effects regression with a random intercept for each participant was used to assess associations between indoor and indoor of ambient origin PM2.5 and BC with each biomarker. RESULTS: 144 participants resulting in 482 observations were included in the analysis. There were significant positive associations between indoor BC and indoor BC of ambient origin with CRP [%-increase per interquartile range (IQR);95 % CI (13.2 %;5.2-21.8 and 11.4 %;1.7-22.1, respectively)]. Associations with indoor PM2.5 and indoor PM2.5 of ambient origin were weaker. There were no associations with IL-6 or sVCAM-1. CONCLUSIONS: In homes of patients with COPD without major sources of combustion, indoor BC is mainly attributable to the infiltration of ambient sources of combustion indoors. Indoor BC of ambient origin is associated with increases in systemic inflammation in patients with COPD, even when staying indoors.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Biomarcadores , Material Particulado , Doença Pulmonar Obstrutiva Crônica , Fuligem , Doença Pulmonar Obstrutiva Crônica/sangue , Humanos , Material Particulado/análise , Biomarcadores/sangue , Fuligem/análise , Fuligem/efeitos adversos , Poluição do Ar em Ambientes Fechados/análise , Poluição do Ar em Ambientes Fechados/estatística & dados numéricos , Poluição do Ar em Ambientes Fechados/efeitos adversos , Masculino , Feminino , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/efeitos adversos , Idoso , Pessoa de Meia-Idade , Exposição Ambiental/estatística & dados numéricos , Interleucina-6/sangue , Proteína C-Reativa/análise , Inflamação/sangue
12.
Sci Total Environ ; 919: 170796, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38336053

RESUMO

Black carbon (BC) and brown carbon (BrC) are aerosols that absorb light and thereby contribute to climate change. In this study, the light absorption properties and spatiotemporal distributions of equivalent BC (eBC) and BrC aerosols were determined based on continuous measurements of aerosol light absorption from January to August 2017, using a seven-channel aethalometer at 49 sampling sites in China. The source apportionments of BC and BrC were identified using the BC/PM2.5, absorption Ångström exponent, the concentration-weighted trajectory method, and the random forest model. Based on the results, BC was the dominant light absorber, whereas BrC was responsible for a higher proportion of the light absorption in northern compared to southern China. The light absorption of BrC was highest in winter (34.3 Mm-1), followed by spring (19.0 Mm-1) and summer (3.6 Mm-1). The combustion of liquid fuels accounted for over 50 % of the light absorption coefficient of BC in most cities and the importance of carbon monoxide (CO) and nitrogen dioxide (NO2) was over 10 % for BC emitted by liquid fuel combustion, based on the random forest model. The contribution of solid fuel combustion to BC in the north was larger than that in the southern regions as coal combustion and crop residue burning are important emission sources of BC in most northern cities. The contribution of primary BrC to light absorption was high in some northern cities, whereas that of secondary BrC was prevalent in some southern cities. The diurnal variations in secondary BrC were affected by changes in odd oxygen and relative humidity, which promoted the photobleaching of the chromophores and aqueous-phase reactions of secondary BrC.

13.
Environ Res ; 248: 118380, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38307182

RESUMO

Evidence suggests that myocardial interstitial fibrosis, resulting from cardiac remodeling, may possibly be influenced by mechanisms activated through the inhalation of airborne pollutants. However, limited studies have explored the relationship between lifetime exposure to carbon-based particles and cardiac fibrosis, specially using post-mortem samples. This study examined whether long-term exposure to air pollution (estimated by black carbon accumulated in the lungs) is associated with myocardial fibrosis in urban dwellers of megacity of Sao Paulo. Data collection included epidemiological and autopsy-based approaches. Information was obtained by interviewing the next of kin and through the pathologist's report. The individual index of exposure to carbon-based particles, which we designed as the fraction of black carbon (FBC), was estimated through quantification of particles on the macroscopic lung surface. Myocardium samples were collected for histopathological analysis to evaluate the fraction of cardiac fibrosis. The association between cardiac fibrosis and FBC, age, sex, smoking status and hypertension was assessed by means of multiple linear regression models. Our study demonstrated that the association of FBC with cardiac fibrosis is influenced by smoking status and hypertension. Among hypertensive individuals, the cardiac fibrosis fraction tended to increase with the increase of the FBC in both groups of smokers and non-smokers. In non-hypertensive individuals, the association between cardiac fibrosis fraction and FBC was observed primarily in smokers. Long-term exposure to tobacco smoke and environmental particles may contribute to the cardiac remodeling response in individuals with pre-existing hypertension. This highlights the importance of considering hypertension as an additional risk factor for the health effects of air pollution on the cardiovascular system. Moreover, the study endorses the role of autopsy to investigate the effects of urban environment and personal habits in determining human disease.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Hipertensão , Humanos , Poluentes Atmosféricos/análise , Brasil , Remodelação Ventricular , Pulmão , Fibrose , Carbono/análise
14.
Mar Pollut Bull ; 201: 116149, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38364527

RESUMO

The Arctic is severely affected by climate change and various forms of environmental pollution. Enriched with nutrients and light-absorbing compounds, the wildfire plume has the potential to affect biological carbon fixation and sequestration within the Arctic Ocean. In this study, we utilized satellite-derived oceanic data (phytoplankton and sea ice) and atmospheric reanalysis products (black carbon, BC, indicative of wildfire impact) to evaluate the effect of the pronounced increase in wildfires from 2019 to 2021 on the East Siberian Sea. During these years, chlorophyll-a levels rose by ∼213 % compared to the previous decadal average, which had notably lower wildfire activities. This increase in chlorophyll-a is attributable to the deposition of nitrogen from the wildfire plume. Concurrently, the period required for sea ice concentration to decrease by 25 % was on average âˆ¼ 10 days shorter than usual. This suggests that BC-induced acceleration of sea ice melting might extend the growing season for phytoplankton.


Assuntos
Incêndios Florestais , Oceanos e Mares , Regiões Árticas , Clorofila , Fitoplâncton , Clorofila A , Carbono , Nutrientes , Camada de Gelo
15.
J Hazard Mater ; 468: 133785, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38367441

RESUMO

BACKGROUND: Although growing evidence has shown independent links of long-term exposure to fine particulate matter (PM2.5) with cognitive impairment, the effects of its constituents remain unclear. This study aims to explore the associations of long-term exposure to ambient PM2.5 constituents' mixture with cognitive impairment in Chinese older adults, and to further identify the main contributor. METHODS: 15,274 adults ≥ 65 years old were recruited by the Chinese Longitudinal Healthy Longevity Study (CLHLS) and followed up through 7 waves during 2000-2018. Concentrations of ambient PM2.5 and its constituents (i.e., black carbon [BC], organic matter [OM], ammonium [NH4+], sulfate [SO42-], and nitrate [NO3-]) were estimated by satellite retrievals and machine learning models. Quantile-based g-computation model was employed to assess the joint effects of a mixture of 5 PM2.5 constituents and their relative contributions to cognitive impairment. Analyses stratified by age group, sex, residence (urban vs. rural), and region (north vs. south) were performed to identify vulnerable populations. RESULTS: During the average 3.03 follow-up visits (89,296.9 person-years), 4294 (28.1%) participants had developed cognitive impairment. The adjusted hazard ratio [HR] (95% confidence interval [CI]) for cognitive impairment for every quartile increase in mixture exposure to 5 PM2.5 constituents was 1.08 (1.05-1.11). BC held the largest index weight (0.69) in the positive direction in the qg-computation model, followed by OM (0.31). Subgroup analyses suggested stronger associations in younger old adults and rural residents. CONCLUSION: Long-term exposure to ambient PM2.5, particularly its constituents BC and OM, is associated with an elevated risk of cognitive impairment onset among Chinese older adults.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Disfunção Cognitiva , Humanos , Idoso , Material Particulado/toxicidade , Estudos de Coortes , Poluentes Atmosféricos/toxicidade , Exposição Ambiental , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/epidemiologia , China/epidemiologia , Poluição do Ar/efeitos adversos
16.
Environ Pollut ; 346: 123568, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38382732

RESUMO

Current methods for measuring black carbon aerosol (BC) by optical methods apportion BC to fossil fuel and wood combustion. However, these results are aggregated: local and non-local combustion sources are lumped together. The spatial apportioning of carbonaceous aerosol sources is challenging in remote or suburban areas because non-local sources may be significant. Air quality modeling would require highly accurate emission inventories and unbiased dispersion models to quantify such apportionment. We propose FUSTA (FUzzy SpatioTemporal Apportionment) methodology for analyzing aethalometer results for equivalent black carbon coming from fossil fuel (eBCff) and wood combustion (eBCwb). We applied this methodology to ambient measurements at three suburban sites around Santiago, Chile, in the winter season 2021. FUSTA results showed that local sources contributed ∼80% to eBCff and eBCwb in all sites. By using PM2.5 - eBCff and PM2.5 - eBCwb scatterplots for each fuzzy cluster (or source) found by FUSTA, the estimated lower edge lines showed distinctive slopes in each measurement site. These slopes were larger for non-local sources (aged aerosols) than for local ones (fresh emissions) and were used to apportion combustion PM2.5 in each site. In sites Colina, Melipilla and San Jose de Maipo, fossil fuel combustion contributions to PM2.5 were 26 % (15.9 µg m-3), 22 % (9.9 µg m-3), and 22 % (7.8 µg m-3), respectively. Wood burning contributions to PM2.5 were 22 % (13.4 µg m-3), 19 % (8.9 µg m-3) and 22% (7.3 µg m-3), respectively. This methodology generates a joint source apportionment of eBC and PM2.5, which is consistent with available chemical speciation data for PM2.5 in Santiago.


Assuntos
Poluentes Atmosféricos , Poluentes Atmosféricos/análise , Material Particulado/análise , Monitoramento Ambiental/métodos , Estações do Ano , Fuligem/análise , Combustíveis Fósseis/análise , Aerossóis/análise , Carbono/análise
17.
Sensors (Basel) ; 24(3)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38339682

RESUMO

Black carbon (BC) or soot contains ultrafine combustion particles that are associated with a wide range of health impacts, leading to respiratory and cardiovascular diseases. Both long-term and short-term health impacts of BC have been documented, with even low-level exposures to BC resulting in negative health outcomes for vulnerable groups. Two aethalometers-AethLabs MA350 and Aerosol Magee Scientific AE33-were co-located at a Utah Division of Air Quality site in Bountiful, Utah for just under a year. The aethalometer comparison showed a close relationship between instruments for IR BC, Blue BC, and fossil fuel source-specific BC estimates. The biomass source-specific BC estimates were markedly different between instruments at the minute and hour scale but became more similar and perhaps less-affected by high-leverage outliers at the daily time scale. The greater inter-device difference for biomass BC may have been confounded by very low biomass-specific BC concentrations during the study period. These findings at a mountainous, high-elevation, Greater Salt Lake City Area site support previous study results and broaden the body of evidence validating the performance of the MA350.


Assuntos
Poluentes Atmosféricos , Poluentes Atmosféricos/análise , Fuligem/análise , Carbono/análise , Monitoramento Ambiental/métodos , Material Particulado/análise , Aerossóis
18.
Artigo em Inglês | MEDLINE | ID: mdl-38366322

RESUMO

This study investigates the vertical distribution of pollutants emitted from coal yards using unmanned aerial vehicles (UAVs). Vertical concentration measurements of black carbon (BC) and particulate matter (PM) in a range of 1 m to 100 m above ground level (AGL) in the central coal yard showed clear spatial patterns and gradients of these pollutants. In addition, measurements were taken at specific heights (1 m, 30 m AGL, and 60 m AGL) at seven locations approximately 3 km from the yard. Thirteen measurements were carried out during the non-heating period under similar weather conditions. The measured BC concentrations decreased significantly with increasing altitude, with ground-level concentrations reaching 1.88 ± 0.61 µg/m3 and decreasing by over 46% at 80 m AGL. Similarly, PM10 concentrations at 60 m AGL decreased by 21.7%, with values of 25.99 ± 9.24 µg/m3 measured near the ground level and 16.52 ± 8.31 µg/m3 at 60 m AGL. The maximum coal particle pollution from the coal depot ranges from 500 to 1,000 m. The study showed a significant decrease in BC concentrations with height above the coal yard surface. Concentrations of PM10 and PM10-TSP showed a complex distribution influenced by local emissions and long-range particle transport. Meteorological factors, especially wind speed and direction, significantly influenced the pollutant dispersion. In addition, higher pollutant concentrations were measured during dry periods than after rainfall. The findings of this study contribute to a better understanding of the dispersion patterns and potential impacts of coal dust, enabling the implementation of targeted mitigation strategies and improved pollution control measures.

19.
Sci Total Environ ; 918: 170374, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38307267

RESUMO

Carbonaceous aerosols play a vital role in global climate patterns due to their potent light absorption capabilities. However, the light absorption enhancement effect (Eabs) of black carbon (BC) is still subject to great uncertainties due to factors such as the mixing state, coating material, and particle size distribution. In this study, fine particulate matter (PM2.5) samples were collected in Chengdu, a megacity in the Sichuan Basin, during the winter of 2020 and 2021. The chemical components of PM2.5 and the light absorption properties of BC were investigated. The results revealed that secondary inorganic aerosols and carbonaceous aerosols were the dominant components in PM2.5. Additionally, the aerosol filter filtration-dissolution (AFD) treatment could improve the accuracy of measuring elemental carbon (EC) through thermal/optical analysis. During winter in Chengdu, the absorption enhancement values of BC ranged between 1.56 and 2.27, depending on the absorption wavelength and the mixing state of BC and non-BC materials. The presence of internally mixed BC and non-BC materials significantly contributed to Eabs, accounting for an average of 68 % at 405 nm and 100 % at 635 nm. The thickness of the BC coating influenced Eabs, displaying an increasing-then-decreasing trend. This trend was primarily attributed to the hygroscopic growth and dehydration shrinkage of particulate matter. Nitrate, as the major component of BC coating, played a crucial role in the lensing effect and exhibited fast growth during variation in Eabs. By combining the results from PMF, we identified the secondary formation and vehicle emission as the primary contributors to Eabs. Consequently, this study can provide valuable insights into the optical parameters, which are essential for assessing the environmental quality, improving regional atmospheric conditions, and formulating effective air pollution control strategies.

20.
Part Fibre Toxicol ; 21(1): 7, 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38368385

RESUMO

BACKGROUND: Airborne environmental and engineered nanoparticles (NPs) are inhaled and deposited in the respiratory system. The inhaled dose of such NPs and their deposition location in the lung determines their impact on health. When calculating NP deposition using particle inhalation models, a common approach is to use the bulk material density, ρb, rather than the effective density, ρeff. This neglects though the porous agglomerate structure of NPs and may result in a significant error of their lung-deposited dose and location. RESULTS: Here, the deposition of various environmental NPs (aircraft and diesel black carbon, wood smoke) and engineered NPs (silica, zirconia) in the respiratory system of humans and mice is calculated using the Multiple-Path Particle Dosimetry model accounting for their realistic structure and effective density. This is done by measuring the NP ρeff which was found to be up to one order of magnitude smaller than ρb. Accounting for the realistic ρeff of NPs reduces their deposited mass in the pulmonary region of the respiratory system up to a factor of two in both human and mouse models. Neglecting the ρeff of NPs does not alter significantly the distribution of the deposited mass fractions in the human or mouse respiratory tract that are obtained by normalizing the mass deposited at the head, tracheobronchial and pulmonary regions by the total deposited mass. Finally, the total deposited mass fraction derived this way is in excellent agreement with those measured in human studies for diesel black carbon. CONCLUSIONS: The doses of inhaled NPs are overestimated by inhalation particle deposition models when the ρb is used instead of the real-world effective density which can vary significantly due to the porous agglomerate structure of NPs. So the use of realistic ρeff, which can be measured as described here, is essential to determine the lung deposition and dosimetry of inhaled NPs and their impact on public health.


Assuntos
Exposição por Inalação , Nanopartículas , Humanos , Camundongos , Animais , Tamanho da Partícula , Exposição por Inalação/análise , Pulmão , Fuligem , Nanopartículas/química , Carbono
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...